Bài viết này được mình tham khảo chính từ bài viết của tác giả Sambasivarao. K và bài báo có tên là Improving Object Detection With One Line of Code năm 2017 của nhóm tác giả Navaneeth Bodla.
Trong bài viết này, chúng ta sẽ tìm hiểu mô hình AlexNet và CaffeNet. AlexNet là mô hình neural network giành chiến thắng tại cuộc thi ILSVRC năm 2012.
Mình dang làm một số đề tài về xử lý ảnh, và đang muốn áp dụng các thuật toán xử lý ảnh cổ điển (không dùng đến deep learning và machine learning) để giải quyết bài toán của mình. Bài viết này nằm trong seria bài viết của mình về đề tài xử lý ảnh sử dụng các kỹ thuật cơ bản. Bài đầu tiên là giới thiệu về contours và sử dụng opencv để rút ra các contour .
Trong bài viết này, chúng ta sẽ tìm hiểu mô hình MobileNetV1 của nhóm tác giả Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam - Google Inc từ bài báo MobileNets Efficient Convolutional Neural Networks for Mobile Vision Applications đăng năm 2017. Mục tiêu của mô hình này là xây dựng một mô hình mạnh mẽ nhưng nhỏ gọn, có thể chạy deep neural network trên các thiết bị di động như điện thoại, máy tính bảng hoặc các thiết bị nhúng.
Bài này nằm trong loạt serie nghiên cứu và sử dụng công cụ PredictionIO. Đây là bài thứ hai sau bài mở đầu, ở bài này, chúng ta sẽ test thử một chương trình đơn giản để làm quen với cách sử dụng PredictionIO.
Trong bài viết này, chúng ta sẽ đề cập chủ yếu vào khái niệm dropout của mạng neural network và mô hình deep nets. Trong đó sẽ có vài thực nghiệm để thấy được hiệu quả của việc sử dụng dropout.
Bài này nằm trong loạt serie nghiên cứu và sử dụng công cụ PredictionIO. Đây là bài mở đầu, hướng dẫn cách cài đặt PredictionIO trên ubuntu.
Lấy mẫu dữ liệu là một kỹ thuật rất quang trọng trong thống kê, là yếu tố quan trọng góp phần xác định độ chính xác của research/ survey. Nếu có bất kỳ sai sót gì trong quá trình lấy mẫu, nó sẽ ảnh hưởng trực tiếp đến kết quả cuối cùng. Có rất nhiều kỹ thuật giúp chúng ta thu thập mẫu dựa trên nhu cầu và tình huống chúng ta cần. Bài viết này sẽ giải thích một số kỹ thuật phổ biến nhất.
Machine Learning đã và đang được quan tâm, nghiên cứu sâu rộng, có rất nhiều các thuật toán được cho ra đời. Như vậy liệu các thuật toán ấy có đặc điểm hay chức năng tương đồng và có cách nào để dễ nhớ hay không. Trong bài viết này mình sẽ chia sẻ với các bạn các cách để phân nhóm các thuật toán ML.
Tại sự kiện I/O đang diễn ra tại Mountain View, California (Mỹ), Google đã công bố nhiều thay đổi quan trọng cho Google Photos. Một trong những tính năng gây ấn tượng tại sự kiện là biến ảnh đen trắng (như các tấm hình cũ, đã chụp từ lâu) thành ảnh màu. Chúng ta cùng implement lại tính năng này sử dụng keras và tensorflow nhé