Nhân dịp đầu tháng, mình khai bút với chủ đề Real Time Recommendation. Paper này mình đọc cũng khá lâu rồi, giờ mới có dịp note lại chia sẻ. Các kỹ sư của ByteDance vừa mới cung cấp một paper nêu ra một vài hướng nghiên cứu của họ về Real Time Recommendation mà họ đã áp dụng thành công trong sản phẩm tiktok. Chủ đề này liên quan nhiều đến MLOpts - xây dựng kiến trúc hệ thống.
Netflix là một trong những nền tảng stream video phổ biến nhất thế giới. Nền tảng này có hơn 10 ngàn bộ phim và các chương trình truyền hình. Trong bài viết này, mình sẽ phân tích dataset về các thông tin mà netflix cung cấp trong file netflix.csv
Ở bài viết này, mình sẽ giới thiệu các bạn một vài cách để có thể đọc file trong python. Thông thường, mình sẽ search google rồi copy paste các đoạn mã lệnh của người dùng đóng góp trên stackoverflow về và chạy. Nay mình ngồi túm nó lại thành 1 bài viết để sau này mình dễ dàng tra cứu
Ở bài viết này, mình sẽ giới thiệu các bạn một vài cách có thể giúp các bạn có thêm thu nhập dựa vào việc cào dữ liệu. Tất nhiên là các công việc đều không dễ dàng gì, chúng ta cần đổ thêm chút sức trâu bò và nuôi dưỡng thì mới có ngày hái quả ngọt được
Việc huấn luyên mô hình máy học có thể sẽ gây ra cho bạn một chút khó khăn nếu bạn không hiểu những thứ bạn dang làm là đúng hay sai. Trong hầu hết các trường hợp, các mô hình học máy là các "hộp đen"
Trong bài viết này, chúng ta sẽ tìm hiểu mô hình AlexNet và CaffeNet. AlexNet là mô hình neural network giành chiến thắng tại cuộc thi ILSVRC năm 2012.
Trong bài viết này, chúng ta sẽ tìm hiểu mô hình MobileNetV1 của nhóm tác giả Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam - Google Inc từ bài báo MobileNets Efficient Convolutional Neural Networks for Mobile Vision Applications đăng năm 2017. Mục tiêu của mô hình này là xây dựng một mô hình mạnh mẽ nhưng nhỏ gọn, có thể chạy deep neural network trên các thiết bị di động như điện thoại, máy tính bảng hoặc các thiết bị nhúng.
Mình dang làm một số đề tài về xử lý ảnh, và đang muốn áp dụng các thuật toán xử lý ảnh cổ điển (không dùng đến deep learning và machine learning) để giải quyết bài toán của mình. Bài viết này nằm trong seria bài viết của mình về đề tài xử lý ảnh sử dụng các kỹ thuật cơ bản. Bài đầu tiên là giới thiệu về contours và sử dụng opencv để rút ra các contour .
Trong bài viết này, chúng ta sẽ đề cập chủ yếu vào khái niệm dropout của mạng neural network và mô hình deep nets. Trong đó sẽ có vài thực nghiệm để thấy được hiệu quả của việc sử dụng dropout.
Lấy mẫu dữ liệu là một kỹ thuật rất quang trọng trong thống kê, là yếu tố quan trọng góp phần xác định độ chính xác của research/ survey. Nếu có bất kỳ sai sót gì trong quá trình lấy mẫu, nó sẽ ảnh hưởng trực tiếp đến kết quả cuối cùng. Có rất nhiều kỹ thuật giúp chúng ta thu thập mẫu dựa trên nhu cầu và tình huống chúng ta cần. Bài viết này sẽ giải thích một số kỹ thuật phổ biến nhất.